Cell docking in double grooves in a microfluidic channel.
نویسندگان
چکیده
Microstructures that generate shear-protected regions in microchannels can rapidly immobilize cells for cell-based biosensing and drug screening. Here, a two-step fabrication method is used to generate double microgrooves with various depth ratios to achieve controlled double-level cell patterning while still providing shear protection. Six microgroove geometries are fabricated with different groove widths and depth ratios. Two modes of cell docking are observed: cells docked upstream in sufficiently deep and narrow grooves, and downstream in shallow, wide grooves. Computational flow simulations link the groove geometry and bottom shear stress to the experimental cell docking patterns. Analysis of the experimental cell retention in the double grooves demonstrates its linear dependence on inlet flow speed, with slope inversely proportional to the sheltering provided by the groove geometry. Thus, double-grooved microstructures in microfluidic channels provide shear-protected regions for cell docking and immobilization and appear promising for cell-based biosensing and drug discovery.
منابع مشابه
Microcirculation within grooved substrates regulates cell positioning and cell docking inside microfluidic channels.
Immobilization of cells inside microfluidic devices is a promising approach for enabling studies related to drug screening and cell biology. Despite extensive studies in using grooved substrates for immobilizing cells inside channels, a systematic study of the effects of various parameters that influence cell docking and retention within grooved substrates has not been performed. We demonstrate...
متن کاملA Microfluidic Platform Containing Sidewall Microgrooves for Cell Positioning and Trapping
Microfluidic channels enable the control of cell positioning and the capturing of cells for high-throughput screening and other cellular applications. In this paper, a simple microfluidic platform is proposed for capturing small volumes of cells using sidewall microgrooves. The cell docking patterns in the channels containing sidewall microgroove are also studied. Both numerical and experi‐ men...
متن کاملPropionic acid extraction in a microfluidic system: simultaneous effects of channel diameter and fluid flow rate on the flow regime and mass transfer
In this work, extraction of propionic acid from the aqueous phase to the organic phase (1-octanol) was performed in T-junction microchannels and effects of channel diameter and fluid flow rate on the mass transfer characteristics were investigated. The two-phase flow patterns in studied microchannels with 0.4 and 0.8 mm diameters were observed. Weber number and surface-to-volume ratio were ca...
متن کاملPumpless, selective docking of yeast cells inside a microfluidic channel induced by receding meniscus.
We present a simple cell docking method induced by receding meniscus to capture non-adherent yeast cells onto microwells inside a microfluidic channel. Microwells were fabricated either by capillary moulding of UV curable polyurethane acrylate (PUA) onto glass substrate or direct replica moulding of poly(dimethyl siloxane) (PDMS). A cell suspension of the budding yeast, Saccharomyces cerevisiae...
متن کاملDocking Studies of Phthalimide Pharmacophore as a Sodium Channel Blocker
Objective(s): Recently, phthalimide derivatives were designed based on ameltolide and thalidomide as they possess a similar degree of anticonvulsant potency due to their phenytoin-like profile. The ability of phthalimide pharmacophore to interact with neuronal voltage-dependent sodium channels was studied in the batrachotoxin affinity assay. Therefore, in the present study, a series of 19 com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Small
دوره 5 10 شماره
صفحات -
تاریخ انتشار 2009